xR CS

TEXAS ADVANCED COMPUTING CENTER
WWW.TACC.UTEXAS.EDU

The University of Texas at Austin

ITALC: Interactive Tool for Application-
Level Checkpointing

HUST'17 @ SC17
11/11/17

PRESENTED BY:
Robert McLay
Email: mclay@tacc.utexas.edu

Ritu Arora
Email: rauta@tacc.utexas.edu

Trung Nguyen Ba
Email: tantrungnb@gmail.com

11/10/17 1

Sorry that we could not be present at the
workshop in 3-D!

Ritu Arora, High Performance
Computing group, TACC

Trung Nguyen Ba, previously at TACC,
now at the University of Massachusetts-
Amherst

11/10/17 2

As HPC Systems Evolve...

New policies governing the system usage are put in place

« How many compute nodes can a user access at a
given time, and for how long?

 How many MPI tasks could be running on a compute
node at a given time?

What happens when an application does not complete
running within the maximum allowed time for a job in a
system queue?

« We get queries as shown on the following slide ©

Samples of User Requests for Increasing the
Time Limit in the Queues

[Category] Running jobs or Using TACC Resources October 2, 2017
[Resource] Lonestar5

Hi,

We have a job to run on one node that is hitting the 48 hour time limit. Is it possible to extend that limit to 96 hours for this one|
job?

Thanks,

[Category] Running jobs or Using TACC Resources
[Resource] Lonestars October 5, 2017

Hi,

| was running some simulations on lonestars and found that some simulations ended before converge due to the 48 hour limit on
the queued jobs.

| was wondering whether there is a way for me to run simulations without this time limit.

11/10/17 4

While We Do Accommodate Special
Cases for Extending Job Time Limits, We

Mostly Advice as Follows:

11

We are afraid we do not change the time limits on jobs as
the requests would quickly become unmanageable given
our user volume. We strongly recommend that you use any
checkpointing/restart capabilities of your code to avoid
wasting computational time.

7

There is Also a Need for Making the
Applications Fault-Tolerant

As we get ready for the exascale computing era, the
Mean Time Between Failure (MTBF) of hardware

components is likely to decrease

 What happens to a job when there is a transient
disruption to the services due to a network failure?

« Mechanisms for making the applications resilient to
certain types of expected or unexpected failures (such
as, time out from the job queue, interconnect failure,
or a compute node crash) are needed for saving the
compute cycles and preventing an enormous increase
In the overall time-to-results

Checkpointing is one such mechanism

11/10/17

What is Checkpointing?

If a job gets timed out from the queue while leaving its computation
incomplete, a subsequent job can be submitted to resume the
computation using one of the previously saved states of the
application

The periodically saved execution state of an application that can be
used to resume it after an interruption is known as a checkpoint

Resuming the execution of an application using a previously saved
state (instead of starting all over again) is referred to as the restart
phase

There are different types of checkpointing such as :
user-level or , and application-level

Types of Checkpointing

« System-Level Checkpointing

Pros: Convenient to use, no code changes needed, user only
specifies the checkpointing frequency

« Cons: large memory-footprint of checkpoints as the entire
execution state of the application and the operating system
rocesses are saved during checkpointing, system administrator
evel privileges needed for installation

 Example: Berkeley Lab Checkpointing and Restart (BLCR)

 Library-Level or User-Level Checkpointing

* Pros: useful for checkpointing applications without requiring any
changes to their source-code or the operating system kernel

« Cons: users may need to load the checkpointing library before
starting their applications, and then, would need to dynamically
link the loaded library to their applications, checkpoints have a
large memory-footprint

« Example: DMTCP

« Application-Level Checkpointing: next slide

Tacc

11/10/17

What is Application-Level Checkpointing?

* When the checkpoint-and-restart mechanism 1s built within the
application itself, 1t is called Application-Level Checkpointing

* An efficient implementation of this would require saving and reading the
state of only those variables or data that are necessary for recreating the

state of the entire application. Such variables or data are referred to as
critical variables/data

int main () { i and z are critical
int x = 4; variables as their values are
int y = sqgrt(x); updated and cannot be
int z, 1; derived easily to recreate
] = x*y; the execution state of an
for (i =0; 1< 100; i++) { interrupted program

z += J* myFct (randomNumber * 1i);

}

return 0;

o = 11/10/17 9

Pros and Cons of Application-Level
Checkpointing

* It does not rely on the availability of any external libraries or
tools, and hence, 1s useful for writing portable applications

* While an efficient implementation of this technique will
generate checkpoints with smaller memory footprint and incur
lesser I/0O overheads as compared to other types of
checkpointing, the onus 1s on the user (or the developer) to
manually implement 1t on a per application basis

* This implies that the users should understand the code of the
applications that they are checkpointing

* Manual reengineering of existing code to insert checkpoint-restart logic
1s required, and this can be an error-prone and a time-consuming activity

TACC |

11/10/17 10

Interactive Tool for Application-Level
Checkpointing (ITALC)

« ITALC can reengineer the existing serial and parallel
applications (C/C++/MPI1/OpenMP) to insert the
checkpoint-and-restart functionality in them

Fortran and Python applications will be supported in future

* |tis a command-line tool that depends upon the user-
specifications to reengineer the existing code

« Users provide the checkpointing specifications — that is,
what to checkpoint, where to checkpoint, and the
checkpointing frequency — in an interactive manner

1.

ITALC in Action

ITALC requires the
application source code
and the checkpointing
specifications as user-
input

On the basis of the input
provided to it, ITALC
performs static-code
analysis and generates the
output code that can
checkpoint-and-restart

It uses the ROSE source-
to-source compiler and
the build-in heuristics to
carry out the required
code transformation

[

Input Program (C/C++ Program - Serial or Parallel)

~

ITALC

AST Generation of Input Code

—
- L

User Specifies the Ty})g of the Statements to
Checkpoint (Expression or Iteration or Both), and
Selects Checkpointing Mode: Centralized or
Distributed if Checkpointing for MPI Program

Jr

Static-Code Analysis for Hotspot Retrieval

ge—

S

User Selects Hotspots for Checkpointing, and
Specifies the Frequency of Checkpointing if the
Hotspots are Loops

1

For each Chec‘(point Hotspot

/' Critical Variables Retrieval \

. J

L

User refuses or accepts to
checkpoint the suggested critical
variables

2

[Insertion of Checkpoint and Restart]

X)

4 F |

8p09 ++9 pue Ja|Idwo?) 821n0g-0}-824n0S JSOY

Output Program (New Program with Checkpoint-and-Restart)

U sing ITALC 1. Invoking the ALC tool with file named md.c

2. Choosing the code region to checkpoint

Which would you like to checkpoint?
(@) for-loops only

(1) individual lines only

(2) both

3. Choosing the loop to insert checkpoint blocks

REGION 3 (from function dist, line 168 to 171)

for (i = 0;i < nd;i++) {
dr[i] = (r1[i] - r2[i]);
d = (d + (dr[i] % dr[i]));
}

Would you like to checkpoint this for loop system ? (y/n) y

Variables/Arrays that can be checkpoined in this loop system above:
(1) dr
(2) d

Are there any variables in this list that you would NOT like to checkpoint? (for
mat: #,#,#... or no for no input)

4. Generated code (with ALC support) that can be
compiled and executed

c557-003.stampede(9)$ 1ls rose_md.c
rose_md.c _

Steps for Running the Code Checkpointed
Using ITALC, Interrupting it, and Resuming

Running the generated code first time and
killing it with CTRL+C:
c558-901.stampede (28) $ ibrun -np 6 rpn

TACC: Starting up job 8165029

25 January 2017 09:20:16 PM

PRIME_MPI
C/MPI version

The number of processes is 6

BN - =

8

16
32
64
128
256
512
1024
2048
4096
8192
16384

killing job

B

=N O -

6

11
18
31
54
97
172
309
564
1028
1900

=) =) = = 2 (= = =) (=) (= (=) (=2 (= (=

(@)

Time

.021126
.003351
.003321
.010931
.003320
.003278
.020993
.003285
.003277
.108019
.003502
.004040
.796040
.010968
.035597
AC[c558-901.stampede. tacc.utexas.edu:mpiru
n _rsh] [signal processor] Caught signal 2,

TACC: MPI job exited with code: 1

Running the generated code second time
with the restart flag:

c558-901.stampede (29) $ ibrun -np 6 rpn --r
TACC: Starting up job 8165029
25 January 2017 09:20:33 PM
PRIME MPI
C/MPI version
The number of processes 1is 6

N Pi Time
32768 3512 3.084043
65536 6542 0.461787

131072 12251 1.732492
262144 23000 55.405050

PRIME MPI - Master process:
Normal end of execution.

25 January 2017 09:21:34 PM
TACC: Shutdown complete. Exiting.

11/10/17 14

Run-time Comparison: Code without
Checkpointing, Manual Checkpointing, &
Using ITALC

2000
NC: No Checkpointing
CHKPT-I: Checkpoint Using ITALC
CHKPT-M: Checkpoint Manually
1500
E “ CHKPT-1
- CHKPT-M
1000
500
| . -

MD, Serial MD, MPI MD, CpenMP Prime Number, MPI Dijkstra, OpenMP
Applications

Comparison of Number of Lines of
Code Inserted Manually and with ITALC

Application NC CHKPT-1 CHKPT-M
(# LoC) (# LoC) (# LoC)
NC: No
MD, Serial 712 812 774 checkpointing
CHKPT-I:
MD, MPI 558 875 763 Checkpointing
using ITALC
MD, OpenMP 626 869 773
CHKPT-M:
Prime Number, 247 545 434 Manual
MPI checkpointing
Dijkstra, 588 813 726
OpenMP

11/10/17 16

Files Generated Using ITALC Have Smaller
Memory Footprint as Compared to DMTCP

Name ITALC Date Modified Size Kind

rose_prime_number.c 1:06 AM 19 KB C source code

" NUMFILE_main.txt 1:05 AN 4 KB 2
- ROSE_SAVE_FUNCTION_prime_number.o.txt 1:08 AM 128 bytes ex
" VarLog_.savel.prime_number.0.txt 1:05 AM 57 bytes text
" VarLog_.save2.prime_number.o.txt 1:05 AM 37 bytes lext
DMTCP
el e 1 rauta G-25072 2.3M Nov 9 2016 ckpt_dmtcpl_452457cb737¢5a44-40000-377a61f1b7365.dmtcp
Lrwxrwxrwx 1 rauta G-25072 60 Nov 9 2016 -> ,

=[WX===——— 1 rauta G-25072 6.6K Nov 9 2016

11/10/17 17

References

Trung Nguyen, Ritu Arora, “A Tool for Semi-Automatic Application-Level
Checkpointing”:

http://sc16.supercomputing.org/sc-archive/tech poster/poster files/post228s2-
file3.pdf

Ritu Arora, Purushotham Bangalore, Marjan Mernik: A technique for non-invasive
application-level checkpointing. The Journal of Supercomputing 57(3): 227-255
(2011)

Ritu Arora, Marjan Mernik, Purushotham Bangalore, Suman Roychoudhury,

Saraswathi Mukkai: A Domain-Specific Language for Application-Level
Checkpointing. ICDCIT 2008: 26-38

Jason Ansel, Kapil Arya, and Gene Cooperman. 2009. DMTCP: Transparent
checkpointing for cluster computations and the desktop. In Proceedings of the 2009
IEEE International Symposium on Parallel & Distributed Processing (IPDPS '09).
IZ%%S C1o6rr11yca)tét3er Society, Washington, DC, USA, 1-12. DOI=10.1109/IPDPS.

5

Thank You!

We are grateful for the support received through:
« TACC STAR Scholars program

« Extreme Science and Engineering Discovery Environment
(XSEDE) - NSF grant # ACI-105357

XSEDE

Extreme Science and Engineering
Discovery Environment

11/10/17

19

Any Question, Comments, or Concerns
about ITALC?

For Details, Please Contact:
Ritu Arora at the following email: rauta@tacc.utexas.edu

Pseudo-code for checkpointing a for-loop

for (inti=0; 1 < 100; i++) { b();
}

->

int checkpoint frequency;
int rose_restart;

/*additional code for setting the value of variable rose restart to the value of i
read from the restart file and setting the value of the Variable checkpoint frequency

*/
for (int i = rose_restart; i < 100; i++) {
/*additional code for tracking the call to the function b()- where exactly in b ()
should the code start executing again- and setting any values if required
*/
b();
if(i % checkpoint frequency = 0) {

//code for saving the critical variables to a file

11/10/17 21

