
PRESENTED BY:

ITALC: Interactive Tool for Application-
Level Checkpointing

HUST’17 @ SC17
11/11/17

11/10/17 1

Robert McLay
Email: mclay@tacc.utexas.edu

Ritu Arora
Email: rauta@tacc.utexas.edu

Trung Nguyen Ba
Email: tantrungnb@gmail.com

Sorry that we could not be present at the
workshop in 3-D!

Ritu Arora, High Performance
Computing group, TACC

Trung Nguyen Ba, previously at TACC,
now at the University of Massachusetts-
Amherst

11/10/17 2

As HPC Systems Evolve…
New policies governing the system usage are put in place

•  How many compute nodes can a user access at a
given time, and for how long?

•  How many MPI tasks could be running on a compute

node at a given time?

What happens when an application does not complete
running within the maximum allowed time for a job in a
system queue?

•  We get queries as shown on the following slide J

11/10/17 3

Samples of User Requests for Increasing the
Time Limit in the Queues

11/10/17 4

October	
 2,	
 2017	
 	

October	
 5,	
 2017	
 	

While We Do Accommodate Special
Cases for Extending Job Time Limits, We
Mostly Advice as Follows:

“
We are afraid we do not change the time limits on jobs as
the requests would quickly become unmanageable given
our user volume. We strongly recommend that you use any
checkpointing/restart capabilities of your code to avoid
wasting computational time.
”

11/10/17 5

There is Also a Need for Making the
Applications Fault-Tolerant

As we get ready for the exascale computing era, the
Mean Time Between Failure (MTBF) of hardware
components is likely to decrease

•  What happens to a job when there is a transient
disruption to the services due to a network failure?

•  Mechanisms for making the applications resilient to
certain types of expected or unexpected failures (such
as, time out from the job queue, interconnect failure,
or a compute node crash) are needed for saving the
compute cycles and preventing an enormous increase
in the overall time-to-results
•  Checkpointing is one such mechanism

11/10/17 6

What is Checkpointing?
•  If a job gets timed out from the queue while leaving its computation

incomplete, a subsequent job can be submitted to resume the
computation using one of the previously saved states of the
application

•  The periodically saved execution state of an application that can be
used to resume it after an interruption is known as a checkpoint

•  Resuming the execution of an application using a previously saved
state (instead of starting all over again) is referred to as the restart
phase

•  There are different types of checkpointing such as system-level,
user-level or library-level, and application-level

11/10/17 7

Types of Checkpointing
•  System-Level Checkpointing

•  Pros: Convenient to use, no code changes needed, user only
specifies the checkpointing frequency

•  Cons: large memory-footprint of checkpoints as the entire
execution state of the application and the operating system
processes are saved during checkpointing, system administrator
level privileges needed for installation

•  Example: Berkeley Lab Checkpointing and Restart (BLCR)

•  Library-Level or User-Level Checkpointing
•  Pros: useful for checkpointing applications without requiring any

changes to their source-code or the operating system kernel
•  Cons: users may need to load the checkpointing library before

starting their applications, and then, would need to dynamically
link the loaded library to their applications, checkpoints have a
large memory-footprint

•  Example: DMTCP

•  Application-Level Checkpointing: next slide

11/10/17 8

What is Application-Level Checkpointing?
•  When the checkpoint-and-restart mechanism is built within the

application itself, it is called Application-Level Checkpointing
•  An efficient implementation of this would require saving and reading the

state of only those variables or data that are necessary for recreating the
state of the entire application. Such variables or data are referred to as
critical variables/data

11/10/17 9

int main(){
 int x = 4;
 int y = sqrt(x);
 int z, i;
 j = x*y;
 for (i =0; i< 100; i++){ 	

 z += j* myFct(randomNumber * i);
 } 	

 return 0;
} 	

	

i and	
 z are	
 cri3cal	

variables	
 as	
 their	
 values	
 are	

updated	
 and	
 cannot	
 be	

derived	
 easily	
 to	
 recreate	

the	
 execu3on	
 state	
 of	
 an	

interrupted	
 program	

Pros and Cons of Application-Level
Checkpointing

•  It does not rely on the availability of any external libraries or
tools, and hence, is useful for writing portable applications

•  While an efficient implementation of this technique will
generate checkpoints with smaller memory footprint and incur
lesser I/O overheads as compared to other types of
checkpointing, the onus is on the user (or the developer) to
manually implement it on a per application basis
•  This implies that the users should understand the code of the

applications that they are checkpointing
•  Manual reengineering of existing code to insert checkpoint-restart logic

is required, and this can be an error-prone and a time-consuming activity

11/10/17 10

Interactive Tool for Application-Level
Checkpointing (ITALC)

•  ITALC can reengineer the existing serial and parallel
applications (C/C++/MPI/OpenMP) to insert the
checkpoint-and-restart functionality in them
•  Fortran and Python applications will be supported in future

•  It is a command-line tool that depends upon the user-
specifications to reengineer the existing code

•  Users provide the checkpointing specifications – that is,
what to checkpoint, where to checkpoint, and the
checkpointing frequency – in an interactive manner

11/10/17 11

ITALC in Action

11/10/17 12

1.  ITALC	
 requires	
 the	

applica3on	
 source	
 code	

and	
 the	
 checkpoin3ng	

specifica3ons	
 as	
 user-­‐
input	

2.  On	
 the	
 basis	
 of	
 the	
 input	

provided	
 to	
 it,	
 ITALC	

performs	
 sta3c-­‐code	

analysis	
 and	
 generates	
 the	

output	
 code	
 that	
 can	

checkpoint-­‐and-­‐restart	

3.  It	
 uses	
 the	
 ROSE	
 source-­‐
to-­‐source	
 compiler	
 and	

the	
 build-­‐in	
 heuris3cs	
 to	

carry	
 out	
 the	
 required	

code	
 transforma3on	

Using ITALC

11/10/17 13

Steps for Running the Code Checkpointed
Using ITALC, Interrupting it, and Resuming

11/10/17 14

Run-time Comparison: Code without
Checkpointing, Manual Checkpointing, &
Using ITALC

11/10/17 15

NC:	
 No	
 Checkpoin3ng	

CHKPT-­‐I:	
 Checkpoint	
 Using	
 ITALC	

CHKPT-­‐M:	
 Checkpoint	
 Manually	

Comparison of Number of Lines of
Code Inserted Manually and with ITALC

11/10/17 16

NC:	
 No	

checkpoin3ng	

	

CHKPT-­‐I:	

Checkpoin3ng	

using	
 ITALC	

	

CHKPT-­‐M:	

Manual	

checkpoin3ng	

Files Generated Using ITALC Have Smaller
Memory Footprint as Compared to DMTCP

11/10/17 17

ITALC	

DMTCP	

References
1.  Trung Nguyen, Ritu Arora, “A Tool for Semi-Automatic Application-Level

Checkpointing”:
http://sc16.supercomputing.org/sc-archive/tech_poster/poster_files/post228s2-
file3.pdf

2.  Ritu Arora, Purushotham Bangalore, Marjan Mernik: A technique for non-invasive

application-level checkpointing. The Journal of Supercomputing 57(3): 227-255
(2011)

3.  Ritu Arora, Marjan Mernik, Purushotham Bangalore, Suman Roychoudhury,

Saraswathi Mukkai: A Domain-Specific Language for Application-Level
Checkpointing. ICDCIT 2008: 26-38

4.  Jason Ansel, Kapil Arya, and Gene Cooperman. 2009. DMTCP: Transparent

checkpointing for cluster computations and the desktop. In Proceedings of the 2009
IEEE International Symposium on Parallel & Distributed Processing (IPDPS '09).
IEEE Computer Society, Washington, DC, USA, 1-12. DOI=10.1109/IPDPS.
2009.5161063

11/10/17 18

Thank You!
We are grateful for the support received through:
•  TACC STAR Scholars program
•  Extreme Science and Engineering Discovery Environment

(XSEDE) - NSF grant # ACI-105357

11/10/17 19

Any Question, Comments, or Concerns
about ITALC?

For Details, Please Contact:
Ritu Arora at the following email: rauta@tacc.utexas.edu

11/10/17 20

Pseudo-code for checkpointing a for-loop
for (int i = 0; i < 100; i++) { b();
}

->

int checkpoint_frequency;
int rose_restart;

/*additional code for setting the value of variable rose_restart to the value of i
read from the restart file and setting the value of the variable checkpoint_frequency

*/

for (int i = rose_restart; i < 100; i++) {

 /*additional code for tracking the call to the function b()– where exactly in b()

 should the code start executing again- and setting any values if required

 */

 b();

 if(i % checkpoint_frequency = 0){

 //code for saving the critical variables to a file

 }

}

11/10/17 21

